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Chromatic Number of the Plane Meets
Map Coloring: Townsend–Woodall’s
5-Color Theorem

In Chapter 8, I described Douglas R. Woodall’s attempt to obtain a result on the
chromatic number of the plane under an additional condition that monochromatic
sets are closed or simultaneously divisible into regions [Woo1]. Six years after his
publication, Stephen P. Townsend found a logical mistake in Woodall’s proof, con-
structed a counterexample showing that Woodall’s proof cannot work, and went on
to discover his own proof of the following major result.

Townsend–Woodall’s 5-Color Theorem 24.1 [Tow2]. Every 5-colored planar
map contains two points of the same color until distance apart.

This implies result 8.1:

Townsend–Woodall’s Theorem 24.1’ The chromatic number of the plane under
map-type coloring is 6 or 7

In this chapter, I will give you the story of the proof and the proof itself.

24.1 On Stephen P. Townsend’s 1979 Proof

This story must remind the readers of the famed Victorian Affair, which we dis-
cussed in Chapters 19 and 20. To sum it up, in 1879 Alfred B. Kempe published a
proof of the 4-Color Map-Coloring Theorem, in which 11 years later Percy J. Hea-
wood found an error and constructed a counterexample to demonstrate the irrepara-
bility of the hole. Heawood salvaged Kempe’s proof as the 5-Color Theorem, but
the 4CC had to wait nearly another century for its proof.

Our present story started with Douglas R. Woodall’s 1973 publication, in which
6 years later Steven P. Townsend found an error and constructed a counterexample
to demonstrate the irreparability of the hole. So far the two stories are so close!
However, unlike its Victorian counterpart, Townsend went on to prove Woodall’s
statement, and so I thought the new story had a happy end—until February 11, 2007,
when I asked Stephen about “the story of the proof.” The surprising reply reached
me by e-mail on February 20, 2007:
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Story of the proof
I first became interested in the plane-colouring problem in 1977 or 1978. At that

time I was a lecturer in the Department of Mathematics at the University of Aberdeen,
having just completed my doctoral thesis (in Numerical Analysis). I had read an article
that listed some of the unsolved problems in Combinatorics at that time, and this one
caught my attention.

I was totally unaware of Douglas’s 1973 proof, which was both my folly and my
good fortune. Folly, in that I should have conducted a more exhaustive literature search
before devoting time to the problem. Good fortune in that had I been aware of Dou-
glas’s paper I would not have spent any time on the problem; I certainly would not
have had the temerity to check Douglas’s proof for accuracy. It should be noted that
I was a numerical analyst, not a combinatorialist, so my awareness of the field of
combinatorics was somewhat limited, in spite of brushing shoulders at Aberdeen with
some eminent contributors to the field.

It was not until I had completed the proof, and was considering what references
to include, that I came upon Douglas’s paper. I was both devastated and puzzled. The
puzzlement came from my intimate knowledge of the difficulties of certain aspects of
the proof and the fact that Douglas seemed to have produced a proof that circumnavi-
gated these difficulties. So it was with an attitude of “how did he manage this?” that I
went through his proof and consequently spotted the error.

A colleague at Aberdeen, John Sheehan, whom I’m sure you will have come across,
encouraged me nonetheless to submit my proof for publication, but including a refer-
ence to Douglas’s work. The rest I think you know.

Yes, Stephen Townsend was lucky, for not only was he the first to produce a
proof—but he also rediscovered the statement of the result on his own, albeit after
Woodall’s publication—and this Townsend’s rediscovery was a necessary condition
for finding the proof.

However, Townsend’s good luck, ran into a wall, when the Journal of Combi-
natorial Theory’s Managing Editor and the distinguished Ramsey theorist Bruce L.
Rothschild wrote to Townsend on April 3, 1980:

The Journal of Combinatorial Theory – Series A is now trying very hard to reduce its
large backlog, and we ask all our referees to be especially attentive to the question of
the importance of the papers. In this case the referee thought that the result was not
of great importance. In view of our backlog situation then, we are reluctant to publish
the paper. However, since it does correct an error in a previously published paper, we
would like to have a very short note about it. Perhaps, you would be willing to do
the following: Write a note pointing out the error, stating the theorem (Theorem 1)
(without proof) used to get around the trouble, and that the theorem must be used with
care to get around the problem.

Stephen P. Townsend had satisfied the Editor (what choice did he have!), and
produced a 2-page proof-free note [Tow1], which was published the following year.
This is where the story was to end in 1981.

No blame should be directed at Douglas R. Woodall, we all make mistakes
(except those of us who do nothing). The mistake notwithstanding, Woodall’s 1973
paper has remained one of the fine works on the subject. Moreover, he was the first
to alert me of his mistake and Townsend’s 2-page note. “I am a fan of your 1973
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paper,” I wrote to Woodall in the October 10, 1993 e-mail, in which I called [Tow1]
“the Townsend’s addendum.” The following day Woodall replied as follows:

I will put a reprint in the post to you today, together with a photocopy of Townsend’s
“addendum,” as you so tactfully describe it. (The fact is, I boobed, and Townsend
corrected my mistake.)

However, regret is in order about the decision by the Journal of Combinatorial
Theory Series A (JCTA). While they apparently (and correctly) assessed Woodall’s
paper as being “of great importance” (an impossible test if one interprets it liter-
ally), they denied its readers—and the world—the pleasure and the profit of reading
Townsend’s proof of the major result.

I have corrected JCTA’s quarter-a-century old mistake, when I published
Townsend’s work in the April 2005 issue of Geombinatorics [Tow2]. Townsend’s
work was preceded by my historical introduction [Soi25], a version of which you
have just read. I ended that introduction with the words I would like to repeat here:
It gives me a great pleasure to introduce and publish Townsend’s proof. In my
opinion, it is of great importance—judge for yourselves!

It pains me to see that most researchers in the field are still unaware of Woodall’s
mistake and Townsend’s proof. It suffices to look at the major problem books to
notice that: not only the 1991 book by Croft–Falconer–Guy [CFG], but even the
recent 2005 book by Brass–Moser–Pach [BMP] give credit to Woodall and do not
mention Townsend! I hope this chapter will inform my colleagues of the correct
credit and of Townsend’s achievement.

Stephen Phillip Townsend was born on July 17, 1948 in Woolwich, London,
England. He received both graduate degrees, Master’s (1972) and doctorate (1977)
from the University of Oxford. Townsend has been a faculty first in the depart-
ment of mathematics (1974–1980) and then in the department of computer science
(1982–present) at the University of Aberdeen, Scotland. Since 1995 he has also been
Director of Studies (Admissions) in Sciences. In addition to publications in mathe-
matics, Steven’s list of publications includes “Women in the Church–Ordination or
Subordination?” (1997).

24.2 Proof of Townsend–Woodall’s 5-Color Theorem

In this chapter, I will present Stephen P. Townsend’s proof. As you now know, it first
appeared in 2005 in Geombinatorics [Tow2]. However, when I was preparing this
chapter, I asked Stephen to improve the exposition, make his important proof more
accessible to the reader not previously familiar with topology, and include plenty of
drawings to help the reader to visualize the proof. He did it, quite brilliantly. Thus,
presented below exposition of the proof has been written by Professor Townsend
especially for this book in 2007.

He starts with a few basic definitions from general (point set) topology.

Definitions A pair of points in E2 unit distance apart having the same color is called
a monochrome unit.
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Let S and T be subsets of E2. S is said to subtend T at unit distance if T is the
union of all unit circles centered on points in S.

Let A be any closed, bounded doubly connected set in E2 containing a circle of
unit radius. If the removal of any point in A renders it simply connected then such a
point is called a cut point of A. If A has no cut points, its interior A0 is said to be a
unit annulus. If A has a finite number of cut points (which must occur on a circle of
unit radius) then A0 is said to be a finitely disconnected unit annulus (Fig. 24.1).

A planar map (Fig. 24.2) is an ordered pair M(S,B) where S is a set of mutually
disjoint bounded finitely connected open sets (regions) in E2 and B is a set of simple
closed curves (frontiers) in E2 satisfying

i. the union of the members of S and B forms a covering of E2;
ii. there exists a one-to-one function F : S → B such that b = F(s), s ∈ S, is the

exterior boundary of s;
iii. the boundary of s ∈ S is the union of F(s) and at most a finite number of other

members of B, which are the interior boundaries of s.
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Fig. 24.1
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Fig. 24.2
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A point on the boundary of s is called a boundary point of s. A boundary point,
which lies on the boundary of k regions, k ≥ 3, is called a vertex of degree k. A
closed subset of a frontier b ∈ B, which is bounded by two vertices and contains no
other vertices, is called an edge of each region for which b is part of the boundary.
Two regions are adjacent if their boundaries contain a common edge or a common
frontier.

The above definition is more general than the usual definition of a planar map,
which requires each region s ∈ S to be simply connected, and requires each frontier
b ∈ B to contain at least two vertices.

An r-coloring of a planar map is a function of Cr : E2 → {c1, c2, . . . , cr} where
Cr is constant over each region in S and where a boundary point is given the color
of one of the regions in the closure of which it lies.

Initial Observations: To prove that an r-colored map must contain a monochrome
unit it is sufficient to examine only those r-colored maps satisfying

(i) each region has no interior boundaries, i.e., its closure does not contain the
closure of any other region;

(ii) different regions of the same color have no common boundary points.

This is best understood by observing that every r-colored map with no
monochrome units may be simplified to an r-colored map with no monochrome
units satisfying (i) and (ii) above as follows.

(a)For each region s with interior boundaries, remove these boundaries and assimi-
late into s all regions whose closures are contained in the closure of s.

(b)Remove any edges common to adjacent regions of the same color.

(c)For each vertex v which is a boundary point of two non-adjacent regions of the
same color, choose � > 0 sufficiently small and describe an �-neighborhood
whose closure contains v and whose intersection with each of the two regions
is non-null, coloring this �-neighborhood the same color as the two regions,
and thus forming one new region incorporating the original two and the
�-neighborhood. (Fig. 24.3.)

c1

c2 c3

c4c5

c1
c1

c2 c3

c4c5

c1

Fig. 24.3
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Note that a consequence of (ii) is that we do not need to consider vertices of
degree greater than r in an r-colored map. A sequence of theorems now follows,
concluding with the main result that every 5-colored planar map contains a
monochrome unit. Here is an outline of the proof:

1. we show that every 4-colored planar map contains a monochrome unit;
2. we show that every 5-colored planar map containing a vertex of degree 3 contains

a monochrome unit;
3. we show that every 5-colored planar map without a monochrome unit must con-

tain a vertex of degree 3;
4. for 2 and 3 both to be true, every 5-colored planar map must contain a

monochrome unit.

The Proof: Townsend presents the proof in stages through five theorems.

Theorem 24.2 Let A0 be a finitely disconnected unit annulus (Fig. 24.1) for which
a circle of unit radius contained in its closure, A, has at least one arc of length
greater than �/3 containing no cut points of A. Then any 2-coloring of A0 contains
a monochrome unit.

Outline of Proof The basic argument is as follows (Fig. 24.4).

1. We assume that A0 is 2-colored and contains no monochrome unit.
2. Points x and y can be selected from A0, so that they are differently colored and

as close together as we want.
3. The points x and y can also be chosen so that (a) x is unit distance from at most

one cut point of A, and (b) y is unit distance from no cut points of A.

x y

α
β

All points in R are unit 
distance from both α and 
β

x’
x”

y’
y”

All points in α are unit 
distance from x.

All points in β are unit 
distance from y.

R = P’∩Q’

Fig. 24.4
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4. Point x subtends an arc � of finite length in A0, each point of which is unit
distance from x, and consequently the opposite color to x. Similarly y subtends
an arc � in A0 which is the opposite color to y.

5. Arc � subtends a two-dimensional region, each point of which is unit distance
from a point on �. This region intersects A0 in a band P’ of finite width, each
point of which must be the same color as x. A similar region subtended at unit
distance by arc � intersects A0 in a band Q’, each point of which is the same
color as y.

6. Points x and y can be chosen to lie sufficiently close together to make R = P’∩Q’

non-null.
7. But points in R must simultaneously have the color of x and the color of y, which

is impossible. Consequently, the initial two assumptions are incompatible.

The proof hinges on our ability to construct arcs � and � that each does not
intersect a cut point of A. This will be true if x is unit distance from at most one cut
point of A, and y is unit distance from no cut points of A.

Tool 24.3 Let � be any simple arc of length L in A0 with the following properties:

� � contains at least two points unit distance apart;
� � contains at most M points, each unit distance from exactly one cut point of A;
� all other points in � are unit distance from no cut points of A;
� � is 2-colored with no monochrome units.

Then given � > 0 there exists an �-neighbourhood in � containing a point of
each color, one of which is unit distance from no cut points of A and the other of
which is unit distance from at most one cut point of A.

Proof Let d(x,y) be the straight line distance between two points x and y on �, and
let � (x,y) be the distance along � between x and y.

By assumption there exist two points x1 and y1 in �, not both the same color,
with d(x1, y1) = 1. Let � > 0 be given. The following algorithm uses the method of
bisection to prove the lemma (Fig. 24.5).

1. If M > 1 then from the M points in � that are unit distance from exactly one cut
point of A, select the two that are closest together measuring along �. Let h be
the distance between them along �.

2. If h < � then set � = h.
3. Set i = 1.
4. Let wi be the point in � mid-way (by arc-length) between xi and yi.

xi 

yi 
wi 

xi+1

yi+1 

(xi+1,yi+1) 

Fig. 24.5
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5. If the colors of wi and xi are not the same then put xi+1 = xi and yi+1 = wi

otherwise put xi+1 = wi and yi+1 = yi.
6. If �(xi+1, yi+1) ≥ � increase i by 1 and re-cycle from 4.
7. Points xi+1 and yi+1 satisfy the requirements.

The algorithm terminates in not more than n cycles, where n is the smallest inte-
ger such that �2n > L.

Proof of Theorem 24.2 Let A0 be 2-colored with no monochrome units. Let N be
the number of cut points of A. Let C be a circle of unit radius contained in A. By
assumption, C has at least one arc of length greater than �/3 containing no cut
points of A; hence C has an arc containing no cut points of A, whose end points are
unit distance apart. There are at most 2N points on C in A0 that are unit distance
from a cut point of A. Some of these may be unit distance from two different cut
points of A, but none can be unit distance from more than two cut points of A. By
following a path sufficiently close to C it is possible to construct a simple closed
curve that, apart form the cut points of A, lies entirely within A0, which contains at
most 2N points in A0 that are unit distance from a cut point of A, and that contains
no points in A0 that are unit distance from more than one cut point of A. (This curve
can merely trace the path of C for the most part, deviating only to bypass any points
on C in A0 that are unit distance from two different cut points of A.) There exists an
infinite family Γ of such simple closed curves, for each of which there is an arc of
finite length containing two points unit distance apart not separated by a cut point
(Fig. 24.6). This must be so since C has two such points, and we can choose the
members of Γ to be as close to C as required. For any given � > 0, this arc contains
an �-neighborhood in which lies a point of each color, one of which is unit distance
from at most one cut point of A, and the other of which is unit distance from no cut
points of A (by Tool 24.3).
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Let �1 and �2 be members of Γ . Let x and y be two differently colored points in
an �-neighborhood on �1 such that x is unit distance from at most one cut point of
A and y is unit distance from no cut points of A.

In A0 there exists an arc � of unit radius and centre x which intersects �1 at x ′

and �2 at x ′′ and no point of which is a cut point of A. (If x is unit distance from
one cut point of A then the arc � can be constructed on the other side of x from this
cut point.) Arc � cannot be the same color as x , so must be the same color as y.
Similarly there exists an arc � in A0 of unit radius and centre y which intersects �1

at y′ and �2 at y′′ and no point of which is a cut point of A. Arc � must be the same
color as x.

Let P and Q be sets subtended at unit distance by � and � respectively. P
and Q are finitely disconnected unit annuli, each having one cut point at x and
y respectively, and each intersecting A0 in a band of finite width between �1 and
�2 Let these bands be P′ and Q′ respectively. All points in P′ must be the same
color as x, and all points in Q′ the same color as y. Q′ may be considered to
be the image of P′ under a homeomorphism T which depends on |x-y|. Defining
d(P′, Q′) = sup {|p-T(p)| : p ∈ P′} we have d(P′, Q′) → 0 as |x-y| → 0; in this
sense we say P′ → Q′ as |x-y| → 0. There must then exist � > 0 such that for
|x-y| < �, P′ ∩ Q′ �= 0. But all points in P′ ∩ Q′ must simultaneously be colored
the same as x and y, which is impossible. Consequently the original assumptions are
incompatible, and so if A0 is 2-colored it must contain a monochrome unit.

Using this result it is possible to exclude two configurations from any 4-coloring
of E2 without monochrome units, and show as a natural consequence that any 4-
colored map in E2 contains a monochrome unit.

Theorem 24.4 Let E2 be 4-colored. If for some distinct points x and y there exist
two simple arcs with endpoints x and y, each, excepting the endpoints, being
monochrome but not both the same color, then E2 contains a monochrome unit.

Proof Let the two simple arcs be � and �. If |x − y| > 1 then both � and � contain
a monochrome unit.

Assume |x − y| ≤ 1. Then the intersection of the sets subtended at unit distance
by � and � (excluding the endpoints) is a finitely disconnected unit annulus with at
most two cut points (Fig. 24.7). This annulus is 2-colored at most, since it cannot
contain the colors of � and �, and a circle of unit radius contained in its closure has
an arc of length greater than �/3 containing no cut points, and so by Theorem 24.2
the annulus contains a monochrome unit.

Theorem 24.5 If a 4-coloring of E2 contains two differently colored, bounded, open
connected monochrome sets with a common boundary of finite length, then E2 con-
tains a monochrome unit.

Proof Let G and F be two such sets, and let x and y be two distinct points on
the common boundary. Because the closure of G is a simply connected Jordan
region, there is a simple arc � with endpoints x and y which, apart from its end-
points, lies in G. There exists a similar arc � in F. By theorem 24.4 E2 contains a
monochrome unit.
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Fig. 24.7

Corollary Every 4-colored planar map contains a monochrome unit.

A similar result involving three sets can be proved for 5-colorings of E2, and
again the consequence is that every 5-colored planar map contains a monochrome
unit, but this requires a careful proof.

Theorem 24.6 If a 5-coloring of E2 contains three disjoint, differently colored,
bounded, open, connected, monochrome sets each having a common boundary with
each of the other two, and all three having one common boundary point, then E2

contains a monochrome unit.

Proof Let v be the boundary point common to all three sets and let a1, a2, and
a3 respectively be boundary points common to each pair of sets. We assume these
points are distinct and are chosen to be not more than one unit from each other.
There are simple closed curves �1 colored c1 containing v, a1, and a2; �2 colored
c2 containing v, a1, and a3; and �3 colored c3 containing v, a2, and a3, where in
each case the coloring refers to every point on the curve with the possible exception
of the points v, a1, a2, and a3 (Fig. 24.8). Let P be the intersection of the sets
subtended at unit distance by �1, �2, and �3 excepting the points v, a1, a2, and a3.
P is either a unit annulus or a finitely disconnected unit annulus with at most three
cut points. (A necessary condition for such a cut point to exist is that a set boundary
incident to v is an arc of a circle of unit radius; if the cut point exists then it lies at
the centre of this circle.) P satisfies the requirements of Theorem 24.2, and since it
is 2-colored (viz. not c1, c2 or c3) it must contain a monochrome unit.

Corollary Every 5-colored planar map containing a vertex of degree 3 contains a
monochrome unit.
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Theorem 24.7 Every 5-colored planar map contains a monochrome unit.

Proof We show (i) that every 5-colored planar map with no monochrome units con-
tains a vertex of degree 3 or 4 and (ii) that every such map containing a vertex of
degree 4 also contains a vertex of degree 3.

i. Let v be any vertex in a 5-colored planar map, and assume that this has degree
5. Assume that the map has no monochrome units.
Let � be the boundary of one of the regions which has v as a boundary point.
Let a be a point on � that lies on an edge connected to v. Let b be a point on
� that lies on the other edge connected to v (Fig. 24.9). Let c be a point on the
edge connected to v that is on the opposite side of va to b. Let d be a point on
the edge connected to v that is on the opposite side of vb to a.
There is a simple closed curve �1 passing through v, a, and b all the points of
which, except possibly v, a, and b, are colored c1. There is a simple closed curve
�2 passing through v, a, and c all the points of which, except possibly v, a, and
c, are colored c2. And there is a simple closed curve �3 passing through v, b,
and d all the points of which, except possibly v, b, and d, are colored c3. Let
T2 be the intersection of the sets subtended at unit distance by �1 and �2 and
let T3 be the intersection of the sets subtended at unit distance by �1 and �3 (In
Fig. 24.9 T2 is the hatched region and T3 is the grey region).
We consider two cases. The first is when the angle � subtended at v by a line
from a to b (through the region enclosed by �) is greater than �. The interiors
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of T2 and T3, T2
0 and T3

0 respectively, are unit annuli with no cut points, and
so by Theorem 1 cannot be 2-colored. T2

0 must contain regions colored c3, c4,
and c5, and T3

0 must contain regions colored c2, c4, and c5. The interior of
T1 = T2 ∪ T3 is a 4-colored unit annulus with no cut points.
There is a vertex in T1

0. To prove this, assume it is not so. Then there must be
edges in T1

0 that do not intersect each other in T1
0, each of which intersects both

the interior and the exterior boundary of T1. Any such edge, e, must cross both
T2

0 and T3
0. This means that the regions on either side of e must be colored c4

and c5. Consequently T1
0 is a 2-colored unit annulus, containing no cut points.

The second case is when the angle � is not greater than �. It is clear, since v is
a vertex of degree 5, that the region enclosed by � may be chosen such that �
is not less than 2�/5. Let a1 be a point between v and a on the edge on which
a lies. Similarly let b1 be a point between v and b on the edge on which b lies.
Choose curve �1 so that it passes through a1 and b1 as well as v, a, and b and
so that all of its points, except possibly v, a, a1, b1, and b, are colored c1.
Similarly choose �2 to pass through a1 as well as v, a, and c and �3 to pass
through b1 as well as v, b, and d.
Now each of T2

0 and T3
0 is a finitely disconnected unit annulus with at most

one cut point (Fig. 24.10). The single cut point in T2
0, say p, only occurs in the

event that v, a, and a1 lie on the circle of unit radius centre p. Similarly the single
cut point in T3

0, say q, only occurs in the event that v, b, and b1 lie on the circle
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Fig. 24.10

of unit radius centre q. for T3
0. The interior of T1 = T2 ∪ T3 is a 4-colored

finitely disconnected unit annulus with at most one cut point. This cut point
only occurs in the event that p and q are coincident, and all of v, a, a1, b1,
and b, lie on the same circle of unit radius. If one of p and q lies on the exterior
boundary of T1 and the other lies on the interior boundary then the length of
the arc of the unit circle centre v passing through p and q is � radians, and this
means the distance between p and q is greater than one.
As before we assert there is a vertex in T1

0. To prove this, assume it is not
so. Then there must be edges in T1

0 that do not intersect each other in T1
0,

each of which intersects both the interior and the exterior boundary of T1. Any
such edge, e, must cross both T2

0 and T3
0 except in the case that e passes

through p and remains entirely within T3 until it reaches the opposite boundary
of T1, or e passes through q and remains entirely within T2 until it reaches the
opposite boundary of T1. Note that such an edge e cannot pass through both
p and q, since this would imply the existence of a monochrome unit in one of
the regions on either side of e. Apart from these exceptional edges every edge
in T1

0 must separate and regions colored c4 or c5. This means that T1
0 con-

tains a 2-colored finitely disconnected unit annulus, containing at most two cut
points.
Clearly there is a circle of unit radius in T1 which has an arc of length greater
than �/3 containing no cut points of T1

0. Therefore, by Theorem 24.2 T1
0

contains a monochrome unit. This is a contradiction of the initial assumption,
consequently there must be a vertex in T1

0, and since T1
0 is 4-colored this vertex

is of degree 4 at most.
ii. We show that every 5-colored planar map with no monochrome units containing

a vertex of degree 4 also contains a vertex of degree 3.
Suppose v is a vertex of degree 4 in a 5-colored planar map. Let c1, c2, c3, and
c4 be the colors of the four regions of which v is a boundary point. Let a, b,
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c, and d be points on the four edges incident to v. Let a1, b1, c1, and d1 be
points on the edges between a and v, b and v, c and v, and d and v respectively.
Assume that the map has no monochrome units.
There exists a simple closed curve �1, defined in the closure of the region
colored c1, that passes through v and four of the edge points defined above,
and such that every point in �1, except possibly v and the four edge points, is
colored c1. Similarly, there exist simple closed curves �2, �3, and �4, each of
which contains v and four of the edge points, the points on each curve being
colored c2, c3, and c4 respectively except possibly v and the edge points. Let the
order of the �i be chosen such that �2 and �4 have only the point v in common
(Fig. 24.11).
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b

c
d

2
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T2

T1 T2 T3 T4
T1 T2 T3 T4

T1 T2 T3 T4T1 T2 T3 T4

a1

b1

c1
d1

Fig. 24.11

Let Ti , i = 1, 2, 3, 4, be the intersection of sets subtended at unit distance
by �j, j = 1..4, j �= i . Set Ti is 2-colored with colors ci and c5. Define
T = ∪Ti . The interior of T, T0, is a unit annulus with centre v, possibly finitely
disconnected with at most two cut points (Fig. 24.11).
Every point within T0 that is on a boundary of a region of the planar map is a
boundary point of at most three regions. Suppose none of these boundary points
is a vertex. Then there must exist edges that pass from the interior boundary to
the exterior boundary of T which pass through either both of T1 and T3 or both
of T2 and T4. It is possible for an edge to cut T and only cut one of T1 and T3

or one of T2 and T4, but such an edge must intersect the unit circle centre v at
one of four points, these points being cut points (if they exist) of the finitely
disconnected annuli which are the interiors of T1 ∪ T2, T3 ∪ T4, T1 ∪ T4, and
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T2 ∪T3. There must be edges crossing T which intersect the circle of unit radius
centered on v at points other than these four cut points. (If not then there is an
arc of the circle of unit radius centered on v, of length greater than or equal to
�/2 that lies in or on the boundary of a region of the map. But then this region
must contain a monochrome unit.) An edge crossing both T1 and T3 (or both T2

and T4) must separate regions with different colors. But the only color common
to both T1 and T3 (or both T2 and T4) is c5. We have arrived at a contradiction.
Hence, there must be vertices in T0, and these are of degree 3.

Now, by the corollary of Theorem 24.6 our 5-colored map contains a
monochrome unit!


